|
|||||||||
EXAMINATION PAPERS. |
287 |
||||||||
|
|||||||||
![]() (b) Given that
|
is tuned to have a frequency of 263, |
||||||||
-(&- |
and |
oti |
jCC |
||||||
so found, calculate those of |
|||||||||
|
|||||||||
Ana.—(a) See p. 51. |
|||||||||
|
|||||||||
a 2367 D = 263 X g = -g" = 295£
3 789 G = 263 X o = -5- = 394i |
|||||||||
|
|||||||||
A = 263 X ? = -a1 = 438i |
|||||||||
|
|||||||||
W |
A = 394£ X J = |
7101 |
7101
-j-r = 443-U 16 i& |
||||||
2X8
789 X 3 |
|||||||||
|
|
||||||||
D' z= 394£ X g = ----f— = T = 591| |
|||||||||
|
|||||||||
4. (a) Explain the production of beats, (b) Suppose a set of forks to be tuned to philosophic pitch in which C = 256; and that a fork mistuned to 260 vibrations per second is procured. How many beats per second will the mistuned fork make (1) when sounded only with C = 256; (2) when sounded with 4C s= 264; and (3) wheD sounded with CI = 512 ?
Am.—(a) See pp. 144, 145, 146.
(J) (1) 260 — 256 = 4 beats per second.
(2) 264-260= 4 „
(3) 512 — 260 = 252 Differential.
260 — 252 = 8 beats per second.
5. (a) Enunciate the laws which govern the frequency of vibration of a stretched string ; (b) and point out how these laws come in, in the construction, tuning, and playing a violin.
Am.—(a) See p. 87.
(b) See pp. 88, 89, and 90. |
|||||||||
|
|||||||||